Immuno-oncology in lung cancer

António M. F. Araújo, MD, PhD

Head of the Service of Medical Oncology
Centro Hospitalar do Porto

Instituto de Ciências Biomédicas de Abel Salazar

Porto, 07 June 2014
I provided consultations or attended advisory boards for Astra-Zeneca, Eli Lilly Oncology, F. Hoffman-La Roche Ltd, Merck, Astellas and Pfizer, for which I received appropriate honoraria.
Immuno-oncology in lung cancer

Rationale
Magnitude of genomic derangement

Drugable targets in smokers and never smokers

Significantly mutated genes in squamous NSCLC

Nature 489:519-525, 2012
Evolution of NSCLC, from histology to molecular characteristics

Li T, et al. JCO, 2013
Lung cancer
Willam Coley (1862 – 1936)
Role of the immune system in cancer and the process of immunoediting

Immunoediting describes the contrasting role of the immune system in protecting against tumour development and promoting tumour growth.

Elimination
Cancer immunosurveillance
- Effective antigen processing/presentation
- Effective activation and function of effector cells
 - e.g., T-cell activation without co-inhibitory signals

Equilibrium
Cancer dormancy
- Genetic instability
- Tumour heterogeneity
- Immune selection

Escape
Cancer progression
- Tumours avoid elimination through the outgrowth of tumour cells that can suppress, disrupt, or ‘escape’ the immune system

T-cell based immunomodulation

Prognostic roles of immune cells in NSCLC

- Similar to melanoma and RCC, lung tumours are recognised by the immune system, and initiate an immune response
- Certain immune cells are associated with a better prognosis/improved outcome, while others suggest an unfavourable prognosis and disease outcome

The T-cell antitumour response

1. Tumour antigens released by tumour cells

2. Tumour antigens presented to T cells

3. T cells are activated and proliferate

4. T cells recognize tumour antigens

5. T cells kill tumour cells

APC = antigen-presenting cell

Regulating the T-cell immune response

- T cell responses are regulated through a complex balance of inhibitory (‘checkpoint’) and activating signals.
- Tumours can dysregulate checkpoint and activating pathways, and consequently the immune response.
- Targeting checkpoint and activating pathways is an evolving approach to cancer therapy, designed to promote an immune response.

The image shows only a selection of the receptors/pathways involved:

Activating receptors
- CD28
- OX40
- CD137

Inhibitory receptors
- PD-1
- CTLA-4
- TIM-3
- LAG-3

Antagonistic (blocking) antibodies

Agonistic antibodies

*a*The image shows only a selection of the receptors/pathways involved.

LAG-3 = lymphocyte-activation gene 3

Multiple interactions regulate T-cell responses

Tumours use various mechanisms to escape the immune system

Immune escape mechanisms are complex and frequently overlapping

Data suggesting immune recognition and response in selected tumour types

<table>
<thead>
<tr>
<th>Tumour type</th>
<th>Prognostica tumour infiltrating lymphocytesb</th>
<th>Immune-related spontaneous tumour regressionc</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>Yes1</td>
<td>Yes13 (rare)</td>
</tr>
<tr>
<td>CRC</td>
<td>Yes2</td>
<td>Yes14</td>
</tr>
<tr>
<td>Breast</td>
<td>Yes3,4</td>
<td>No</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Yes5,6</td>
<td>Yes15</td>
</tr>
<tr>
<td>Renal</td>
<td>Yes7,8</td>
<td>Yes16,17</td>
</tr>
<tr>
<td>Prostate</td>
<td>Yes9</td>
<td>No</td>
</tr>
<tr>
<td>Ovarian</td>
<td>Yes10</td>
<td>No</td>
</tr>
<tr>
<td>Head and neck</td>
<td>Yes11</td>
<td>No</td>
</tr>
<tr>
<td>Cervical</td>
<td>Yes12</td>
<td>Evidence for cervical intraepithelial neoplasia 2/318,19</td>
</tr>
</tbody>
</table>

aCovers correlation with improved overall or progression-free survival, disease stage, or therapy outcome

bThe type of lymphocyte dictates where there is a correlation with improved or worsened outcome

cBased on PubMed search conducted in October 2013 using the terms ‘spontaneous regression’ and the tumour type

Potential investigational immunotherapeutic approaches as treatment options for lung cancer

Immunotherapy

Active
- Designed to act on the immune system itself

- Antigen dependent
 - Enhancing immune cell function
 - Cytokines
 - Therapeutic vaccines
 - GSK1572932A
 - TG4010
 - Belagenpumatumucel-L
 - Tergenpumatumucel-L
 - Racotumomab
 - Stimuvax
 - CIMAvax

- Antigen independent
 - Modulate T-cell function
 - Immuno-Oncology (I-O)
 - CTLA-4 inhibition
 - PD-1 inhibition
 - PD-L1 inhibition

Passive (adoptive)
- Designed to act at tumour; immune-based mechanism

- Antitumour mAbs
- Adoptive
 - Bavituximab
 - EGFR inhibition
 - Adoptive cell transfer

CTLA-4 = cytotoxic T-lymphocyte antigen-4; PD-1 = programmed death-1; PD-L1 = programmed death ligand-1

NSCLC tumor immunology and modulation by conventional therapies

Immuno-oncology in lung cancer

Vaccines
Mechanism of action of cancer vaccines

Mechanism of action of cancer vaccines

Monovalent vaccine clinical trials in NSCLC

<table>
<thead>
<tr>
<th>Trial</th>
<th>Description</th>
<th>NSCLC stage</th>
<th>Patient (n)</th>
<th>Trial design</th>
<th>Endpoints</th>
<th>Secondary analysis/results</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC TAA + CFA</td>
<td>CFA +/- SCC TAA vs. Control</td>
<td>Stage I-II SCC¹</td>
<td>85</td>
<td>Phase III Randomized</td>
<td>Primary:</td>
<td>SCC TAA + CFA: 5-Y S = 75%, MOS = 106 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Survival (5-YS)</td>
<td>CFA Alone: 5-Y S = 53%, MOS = 71 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• OS</td>
<td>Control: 5-Y S = 34%, MOS = 38 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secondary:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Adverse Effects</td>
<td></td>
</tr>
<tr>
<td>LUD99-010</td>
<td>Recombinant MAGE-A3 protein +/- AS02B</td>
<td>Stage I-II (MAGE-A3+)</td>
<td>17</td>
<td>Phase II Non-randomized</td>
<td>Primary:</td>
<td>MAGE-A3 alone: (3/9) Abs to MAGE-A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Immune resp.</td>
<td>(1/9) HLA-A2 restricted CD8+ resp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAGE-A3+ AS02B: (8/8) Abs to MAGE-A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4/8) HLA-DR4 restricted CD4+ resp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1/8) HLA-A1 restricted CD8+ resp.</td>
</tr>
<tr>
<td>MAGE-A3 ASCI</td>
<td>Recombinant MAGE-A3 protein + AS15</td>
<td>Stage IB (122/182) Stage II (60/182) (MAGE-A3+)</td>
<td>182</td>
<td>Phase II Randomized (2:1) vax: placebo</td>
<td>Primary:</td>
<td>Hazard Ratio (favoring vax, arm):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• DFI</td>
<td>DFI = 0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secondary:</td>
<td>DFS = 0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Safety</td>
<td>OS = 0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• DFS</td>
<td>Relative improvement in DFI and DFS (27%)</td>
</tr>
<tr>
<td>MAGRIT</td>
<td>Recombinant MAGE-A3 protein + AS15 (MAGE-A3+)</td>
<td>Stage IB-IIIA</td>
<td>2270 (expected)</td>
<td>Phase III Randomized (2:1) vax: placebo</td>
<td>Primary:</td>
<td>Pending</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• DFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secondary:</td>
<td>Validation of gene signature predictive of response</td>
</tr>
</tbody>
</table>

Multivalent vaccine clinical trials in NSCLC

<table>
<thead>
<tr>
<th>Trial</th>
<th>Description</th>
<th>NSCLC stage</th>
<th>Patient (n)</th>
<th>Trial design</th>
<th>Endpoints</th>
<th>Secondary analysis/results</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVAX</td>
<td>GM-CSF transduced, irradiated autologous tumor cells</td>
<td>Cohort A: IB–IIA (10/43) Cohort B: IIIA-IV (33/43)²</td>
<td>83</td>
<td>Phase I/II Non-randomized</td>
<td>Primary: • Safety • Feasibility • Immune resp. Secondary: • Tumor reg. • Disease prog. • Survival</td>
<td>• 80% vax. prod. success in cohort A • Immune resp. not associated with overall tumor reg. or surv. • Recurrences: 6/10 in cohort A</td>
</tr>
<tr>
<td>Autologous Dendritic Cell (ADC)</td>
<td>ADCs loaded with Her2/neu, CEA, WT1, MAGE-2, and survivin peptides</td>
<td>Stage IA–IIIA (13/16)³ Stage IIIB (3/16)⁴</td>
<td>16</td>
<td>Phase II Non-randomized</td>
<td>Primary: • Immune resp. Secondary: • Clinical tolerability</td>
<td>• TAA specific response in (7/12) surgical pts. • No recurrence in (9/12) surgical pts. at mean post-vax F/U of 18 months. • Well tolerated</td>
</tr>
</tbody>
</table>

Phase II and III vaccine trials in NSCLC

<table>
<thead>
<tr>
<th>Agent and trial</th>
<th>Phase</th>
<th>Design and description</th>
<th>n</th>
<th>Results and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGE-A3 vaccine with A502 adjuvant</td>
<td>II</td>
<td>Randomized trial of vaccine or placebo post resection of stage IIB and II MAGE-A3+ NSCLC</td>
<td>182</td>
<td>Gene expression profile revealed a 43% reduction of recurrence in vaccine treated group (HR 0.57, 95% CI 0.36–1.2, P=0.99). Primary end point of disease-free interval was not significantly different between the two groups (HR 0.74, P=0.107)</td>
</tr>
<tr>
<td>Liposomal MUC-1 peptide vaccine (L-BLP-25)</td>
<td>II</td>
<td>Randomized trial of L-BLP-25 vs BSC in patients with stage IIIB or IV NSCLC with stable or responsive disease post chemotherapy or chemoradiation</td>
<td>171</td>
<td>Primary end point of median OS 17.2 months L-BLP-25 vs 13 months BSC (P=0.066); subgroup analysis: stage IIIB patients OS 30.6 months vs 13.3 months in BSC arm</td>
</tr>
<tr>
<td>Vaccinia/MUC-1 vaccine (TG4010)</td>
<td>II</td>
<td>Randomized trial of cisplatin and vinorelbine with TG4010 vs TG4010 as a single agent until disease progression followed by addition of vinorelbine and cisplatin in patients with MUC-1-positive advanced NSCLC</td>
<td>65</td>
<td>Primary end point of response was met only for the concurrent TG4010 and chemotherapy arm; response rate 29.5%</td>
</tr>
<tr>
<td>Vaccinia/MUC-1 vaccine (TG4010)</td>
<td>IIB</td>
<td>Randomized trial of gemcitabine and cisplatin vs the same combination with TG4010 in patients with stage 4 NSCLC</td>
<td>108</td>
<td>Patients with normal level of activated NK cells at baseline had an improvement in 6-month PFS and OS. Patients with high levels of active NK cells had increased toxic effects. Primary end point of 6-month PFS met only for the concurrent TG4010 arm (43%), but not significantly different from chemotherapy alone (35%)</td>
</tr>
<tr>
<td>Allogeneic whole cell NSCLC line vaccine with anti-sense TGF-β (Belagenpumatucel-L)</td>
<td>II</td>
<td>Randomized multi-dose trial in NSCLC with low volume stage II, IIIA, IIB, IV disease</td>
<td>75</td>
<td>Response rate 15%; OS, 441 days in advanced-stage disease setting</td>
</tr>
<tr>
<td>MAGE-A3 NCT00480025</td>
<td>III</td>
<td>Randomized phase III trial of patients with resected stage IIB–IIIA MAGE-A3+ NSCLC post resection or adjuvant chemotherapy</td>
<td>2,289</td>
<td>Primary end point: DFS</td>
</tr>
<tr>
<td>L-BLP-25 NCT00409188</td>
<td>III</td>
<td>Randomized trial comparing vaccine vs placebo in patients with unresectable stage III with stable or responding disease after chemoradiotherapy</td>
<td>1,464</td>
<td>Primary end point: OS not met</td>
</tr>
<tr>
<td>L-BLP-25 NCT01015443*</td>
<td>III</td>
<td>Randomized trial comparing vaccine vs placebo in patients with unresectable stage III with stable or responding disease after chemoradiotherapy</td>
<td>420</td>
<td>Primary end point: OS</td>
</tr>
<tr>
<td>L-BLP-25 NCT00828005†</td>
<td>II</td>
<td>BLP25 vaccine and bevacizumab after chemoradiotherapy for patients with unresectable stage IIIA/E NSCLC</td>
<td>55</td>
<td>Primary end point: safety</td>
</tr>
<tr>
<td>TG4010 NCT01383148</td>
<td>IIB/III</td>
<td>Randomized trial comparing platinum combination chemotherapy with or without vaccine in patients with stage IV NSCLC</td>
<td>1,000</td>
<td>Primary end point: OS</td>
</tr>
<tr>
<td>BeigenpumaturecHL NCT00576507</td>
<td>III</td>
<td>Randomized trial of vaccine or placebo in patients with stage IIA, IIB or IV NSCLC with stable or responding disease after initial chemotherapy</td>
<td>506</td>
<td>Primary endpoint: OS</td>
</tr>
</tbody>
</table>

Immuno-oncology in lung cancer
Differences in CTLA-4 and PD-1 blockade

CTLA-4 blockade (ipilimumab) vs. PD-1 blockade (nivolumab)

Activation (cytokines, lysis, proliferation, migration to tumour)

Ipilimumab blocks CTLA-4 and augments T-cell activation

T-cell activation

- CTLA-4
- T cell
- CD28
- B7
- MHC
- APC

T-cell inhibition

- CTLA-4
- T cell
- CD28
- B7
- MHC
- APC

T-cell potentiation

- Ipilimumab blocks CTLA-4
- T cell
- CD28
- B7
- MHC
- APC

Adapted from Weber J. Cancer Immunol Immunother 58:823, 2009
Randomized phase II study of Ipilimumab and CT in advanced NSCLC

First-line Stage IIIb/IV NSCLC 18 yrs of age or older ECOG PS 0/1

1:1:1

Randomize

Concurrent
IPI + Pac/Carbo

Phased
IPI + Pac/Carbo

Control
P + Pac/Carbo

(N = 204)

Induction Phase
(n = 203)

Maintenance Phase
(n = 73)

q3w

q12w

Follow-up phase

Follow-up phase

Follow-up phase

- Primary endpoint: irPFS
- Cx regimen: Pac 175 mg/m²/carbo AUC 6 prior to start of ipilimumab (10 mg/kg)

Randomized phase II study of Ipilimumab and CT in advanced NSCLC

Randomized phase II study of Ipilimumab and CT in advanced NSCLC

<table>
<thead>
<tr>
<th>Event</th>
<th>Control (n = 65)</th>
<th>Concurrency Ipilimumab (n = 71)</th>
<th>Phased Ipilimumab (n = 67)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grades 1 and 2</td>
<td>Grade 3</td>
<td>Grade 4</td>
</tr>
<tr>
<td>Any adverse event, %</td>
<td>31</td>
<td>29</td>
<td>11</td>
</tr>
<tr>
<td>Any treatment-related adverse event, %</td>
<td>43</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>Treatment-related non-hematologic adverse events, %</td>
<td>Fatigue</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Alopecia</td>
<td>46</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Rash</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Pruritus</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Arthralgia</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Asthenia</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Diarrhea</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Peripheral neuropathy*</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Peripheral sensory neuropathy*</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Hematologic abnormalities, %†</td>
<td>Thrombocytopenia</td>
<td>35</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Neutropenia</td>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Anemia</td>
<td>89</td>
<td>6</td>
</tr>
<tr>
<td>Liver-function enzymes, %†</td>
<td>ALT</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AST</td>
<td>32</td>
<td>2</td>
</tr>
</tbody>
</table>

Ongoing phase III: Ipilimumab in squamous NSCLC

- **Stage IV or recurrent squamous cell NSCLC**
 - ECOG PS ≤ 1 (N = 1100)

- **Double-blind study**
- **Primary endpoint: OS**
- **Secondary endpoints: OS in patients who receive 1 dose of ipilimumab/ placebo, PFS, RR**

Randomization and Drug Allocation

- **Treatment Group 1:**
 - Carboplatin AUC 6 + Paclitaxel 175 mg/m² q3w x 6 + Placebo

- **Treatment Group 2:**
 - Carboplatin AUC 6 + Paclitaxel 175 mg/m² q3w x 6 + Ipilimumab 10 mg/kg q3w x 4, then q12w starting at Wk 24
Immuno-oncology in lung cancer

PD-1 & PD-L1
Blockade of PD-1 binding to PDL1 (B7-H1) and PDL-2 (B7-DC) revives T cells

- PD-L1 expression on tumor cells is induced by γ-interferon
- In other words, activated T cells that could kill tumors are specifically disabled by those tumors
Role of PD-1 pathway in suppressing antitumour immunity

Recognition of tumour by T cell through MHC/antigen interaction mediates IFNγ release and PD-L1/2 upregulation on tumour

Priming and activation of T cells through MHC/antigen and CD28/B7 interactions with antigen-presenting cells

Tumour cell

Dendritic cell

Nivolumab is a PD-1 receptor blocking antibody
<table>
<thead>
<tr>
<th>Compound</th>
<th>Company</th>
<th>Target</th>
<th>Development Stage in NSCLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipilimumab</td>
<td>Bristol-Myers Squibb</td>
<td>CTLA4</td>
<td>Phase III</td>
</tr>
<tr>
<td>Tremelimumab</td>
<td>MedImmune</td>
<td>CTLA4</td>
<td>Phase I</td>
</tr>
<tr>
<td>Nivolumab (BMS-936558)</td>
<td>Bristol-Myers Squibb</td>
<td>PD-1</td>
<td>Phase III</td>
</tr>
<tr>
<td>Lambrolizumab (MK-3475)</td>
<td>Merck</td>
<td>PD-1</td>
<td>Phase III</td>
</tr>
<tr>
<td>BMS-936559</td>
<td>Bristol-Myers Squibb</td>
<td>PD-L1</td>
<td>Phase I</td>
</tr>
<tr>
<td>Medi-4736</td>
<td>MedImmune</td>
<td>PD-L1</td>
<td>Phase I</td>
</tr>
<tr>
<td>MPDL-3280A</td>
<td>Genentech</td>
<td>PD-L1</td>
<td>Phase III</td>
</tr>
</tbody>
</table>

Somme immune checkpoint inhibitors in NSCLC

Nivolumab phase I trial in squamous/nonsquamous NSCLC

Died/Treated - 88/129
Median, Mos (95% CI) - 9.6 (7.8-12.4)

1-yr OS: 42%
2-yr OS: 14%

Open circles indicate censored events, denoting the time to the last known alive date before the date of data analysis, for patients without a death.

Duration of response and overall survival with nivolumab monotherapy in NSCLC

NSCLC responders\(^a,b\) by histology

All treated subjects with NSCLC

Vertical line at 96 weeks = maximum duration of continuous nivolumab therapy

\(^a\)Responses were assessed by modified RECIST v1.0

\(^b\)All efficacy analyses based on data collected as of September 2013

<table>
<thead>
<tr>
<th>Died/treated</th>
<th>Median (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>94/129</td>
<td>9.90 (7.80, 12.40)</td>
</tr>
</tbody>
</table>

Median OS: 9.9 months (7.8, 12.4)

1 year OS rate 42% (48 patients at risk)

2 year OS rate 24% (20 patients at risk)
Nivolumab: activity across NSCLC histology

<table>
<thead>
<tr>
<th>NSCLC histology</th>
<th>Dose (mg/kg)</th>
<th>ORR % (n/N)</th>
<th>Stable disease rate ≥24 week, % (n/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All doses</td>
<td>1</td>
<td>0 (0/18)</td>
<td>26.7 (4/15)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22.2 (4/18)</td>
<td>5.6 (1/18)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>23.8 (5/21)</td>
<td>14.3 (3/21)</td>
</tr>
<tr>
<td>Squamous</td>
<td>All doses</td>
<td>16.7 (9/54)</td>
<td>14.8 (8/54)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26.3 (5/19)</td>
<td>10.5 (2/19)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18.9 (7/37)</td>
<td>5.4 (2/37)</td>
</tr>
<tr>
<td>Nonsquamous</td>
<td>All doses</td>
<td>17.6 (13/74)</td>
<td>6.8 (5/74)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5.6 (1/18)</td>
<td>5.6 (1/18)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>22.2 (4/18)</td>
<td>5.6 (1/18)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18.9 (7/37)</td>
<td>5.4 (2/37)</td>
</tr>
</tbody>
</table>

Selected adverse events (≥1%) in patients with NSCLC treated with nivolumab

- Select adverse event defined as an event with potential immunological aetiologies that require more frequent monitoring and/or unique intervention
- All patients have ≥1 year of follow-up
- Drug-related pneumonitis (any grade) occurred in 8 NSCLC patients (6%); 3 patients (2%) had grade 3-4 pneumonitis of which 2 cases were fatal

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Any grade</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any treatment-related select adverse event</td>
<td>41 (53)</td>
<td>5 (6)</td>
</tr>
<tr>
<td>Skin</td>
<td>16 (20)</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>12 (15)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>7 (9)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Endocrinopathies</td>
<td>6 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Hepatic</td>
<td>5 (6)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Infusion reaction</td>
<td>4 (5)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Renal</td>
<td>3 (4)</td>
<td>0</td>
</tr>
</tbody>
</table>

Nivolumab: change in tumour burden and response kinetics by number of prior therapies

Dashed horizontal lines denote 30% decrease for PR (in the absence of new lesions) and 20% increase for PD per RECIST v1.0

Nivolumab: change in tumour burden according to **EGFR** and **KRAS** mutation status

Dashed horizontal lines denote 30% decrease for PR (in the absence of new lesions) and 20% increase for PD per RECIST v1.0

Baseline tumour measurements are standardised to zero; tumour burden is measured as the sum of the longest diameters of target lesions.
Horizontal lines denote 30% decrease for PR and 20% increase for PD per RECIST 1.1 Only patients with both baseline and on-study target lesion measurements are included.

Rizvi NA, et al. ASCO 2013. Abstract 8072
Nivolumab plus CT: duration of response

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab (10 mg/kg)</th>
<th>Nivolumab (5 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gem/Cis n=12</td>
<td>Pem/Cis n=15</td>
</tr>
<tr>
<td>(Arm A)</td>
<td>(Arm B)</td>
<td>(Arm C)</td>
</tr>
<tr>
<td>Number of responders, n</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Ongoing responders, n (%)</td>
<td>2 (50)</td>
<td>2 (29)</td>
</tr>
<tr>
<td>Estimated median duration of response, weeks</td>
<td>NR</td>
<td>25</td>
</tr>
<tr>
<td>Response duration</td>
<td>12/18/33+/36+</td>
<td>13/14+/18+/24/27/29+/25/32/38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pac/Carb n=14</td>
</tr>
<tr>
<td>(Arm C5)a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carb = carboplatin; Cis = cisplatin; Gem = gemcitabine; Pac = paclitaxel; Pem = pemetrexed

a Protocol was amended to include an extra arm for this combination;
b Time from first response to documented progression, death, or last tumour assessment;
c Estimated mean duration determined by Kaplan-Meier curves;
d+ indicates ongoing response
Nivolumab plus CT: duration of response

<table>
<thead>
<tr>
<th>Treatment-related AE, n (%)</th>
<th>Nivolumab (10 mg/kg)</th>
<th>Nivolumab (5 mg/kg)</th>
<th>Total N=56</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gem/Cis n=12 (Arm A)</td>
<td>Pem/Cis n=15 (Arm B)</td>
<td>Pac/Carb n=15 (Arm C)</td>
</tr>
<tr>
<td>Any AE</td>
<td>0</td>
<td>5 (33)</td>
<td>3 (20)</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>0</td>
<td>2 (13)</td>
<td>0</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>0</td>
<td>1 (7)</td>
<td>0</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>0</td>
<td>1 (7)</td>
<td>2 (13)</td>
</tr>
<tr>
<td>Colitis</td>
<td>0</td>
<td>1 (7)</td>
<td>1 (7)</td>
</tr>
</tbody>
</table>

Carb = carboplatin; Cis = cisplatin; Gem = gemcitabine; Pac = paclitaxel; Pem = pemetrexed

Protocol was amended to include an extra arm for this combination
Ongoing phase III: Nivolumab in squamous NSCLC

Stage IIIB/IV or recurrent squamous-cell NSCLC following RT or resection, previous Pt-containing chemotherapy ECOG PS ≤ 1 (N = 264)

- Primary endpoints: ORR, OS
- Secondary endpoints: PFS, ORR, and OS in PD-L1–positive vs PD-L1–negative subgroups, duration of OR, time to OR, proportion of patients exhibiting disease-related symptom progression as per Lung Cancer Symptom Scale

Treat until progression or unacceptable toxicity or withdrawal of consent

- Docetaxel 75 mg/m² IV q3w
- Nivolumab 3 mg/kg IV q2w
Nivolumab development in NSCLC

<table>
<thead>
<tr>
<th>Setting</th>
<th>Population</th>
<th>Study</th>
<th>Design</th>
<th>Endpoint</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st-line</td>
<td>Treatment-naïve</td>
<td>CA209-012</td>
<td>Nivolumab monotherapy; nivolumab combined with platinum doublets; erlotinib; bevacizumab or ipilimumab</td>
<td>Safety; antitumour activity</td>
<td>Ongoing</td>
</tr>
<tr>
<td></td>
<td>Treatment-naïve</td>
<td>CA209-026</td>
<td>Nivolumab vs investigator’s choice of chemotherapy</td>
<td>PFS in high PD-L1 expression tumours</td>
<td>Not yet recruiting</td>
</tr>
<tr>
<td>2nd-line</td>
<td>Prior platinum, squamous histology</td>
<td>CA209-017</td>
<td>Nivolumab vs docetaxel</td>
<td>ORR/OS</td>
<td>Ongoing/ Accrual complete</td>
</tr>
<tr>
<td></td>
<td>Prior platinum, nonsquamous histology</td>
<td>CA209-057</td>
<td>Nivolumab vs docetaxel</td>
<td>OS</td>
<td>Ongoing/ Accrual complete</td>
</tr>
<tr>
<td>3rd-line and beyond</td>
<td>Squamous histology, ≥2 prior treatments</td>
<td>CA209-063</td>
<td>Nivolumab monotherapy</td>
<td>ORR</td>
<td>Ongoing/ Accrual complete</td>
</tr>
</tbody>
</table>
CA209-012/NCT01454102: ARMS A-F

Phase 1 trial: chemotherapy-based arms
Stage IIIB/IV NSCLC
N=220 (across all arms of trial)

ARM A
Squamous NSCLC
Cis 75 mg/m\(^2\) IV D1 Q3W x four cycles
Gem 1250 mg/m\(^2\) IV D1 and D8 Q3W x four cycles
Nivolumab 10 mg/kg D1 Q3W

ARM B
Nonsquamous NSCLC
Cis 75 mg/m\(^2\) IV D1 Q3W x four cycles
Pem 500 mg/m\(^2\) IV D1 Q3W x four cycles
Nivolumab 10 mg/kg D1 Q3W

ARM C
Any histology
Carbo AUC 6 IV D1 Q3W x four cycles
Pac 200 mg/m\(^2\) IV D1 Q3W x four cycles
Nivolumab 10 mg/kg D1 Q3W

ARM D
Nonsquamous NSCLC ≥4 cycles of platinum-doublet without PD
Maintenance: Bev 15 mg/kg IV D1 Q3W until PD or discontinuation due to toxicity
Nivolumab 5 mg/kg IV D1 Q3W

ARM E
Nonsquamous NSCLC with EGFR mutation
Erl 150 mg/day PO until PD or discontinuation due to toxicity
Nivolumab 3 mg/kg IV D1 Q2W

ARM F
Any histology
Nivolumab 3 mg/kg IV Q2W

Until PD or discontinuation due to toxicity

Protocol was amended to include Arm C5 to obtain further information regarding clinical safety and activity of nivolumab at 5 mg/kg in combination with paclitaxel and carboplatin.
CA209-012/NCT01454102: ARMS G-M

Phase 1 trial: chemotherapy-based arms
Stage IIIB/IV NSCLC
N=220 (across all arms of trial)

ARM G
Squamous NSCLC
IPI 3 mg/kg D1 Q3W x 4
Nivolumab 1 mg/kg IV D1 Q3W x 4, then 3 mg/kg Q2W

ARM H
Nonsquamous NSCLC
IPI 3 mg/kg D1 Q3W x 4
Nivolumab 1 mg/kg IV D1 Q3W x 4, then 3 mg/kg Q2W

ARM I
Squamous NSCLC
IPI 1 mg/kg D1 Q3W x 4
Nivolumab 3 mg/kg IV D1 Q3W x 4, then 3 mg/kg Q2W

ARM J
Nonsquamous NSCLC
IPI 1 mg/kg D1 Q3W x 4
Nivolumab 3 mg/kg IV D1 Q3W x 4, then 3 mg/kg Q2W

ARM K
Squamous NSCLC
pts completing ≥4 cycles of platinum-doublet chemotherapy without PD
Switch maintenance nivolumab 3 mg/kg IV Q2W

ARM L
Nonsquamous NSCLC
patients completing ≥4 cycles of platinum-doublet chemotherapy (bev) without PD
Switch maintenance nivolumab 3 mg/kg IV Q2W

ARM M
Any histology patients with untreated, asymptomatic brain metastases
Nivolumab 3 mg/kg IV Q2W

Until PD or discontinuation due to toxicity

www.clinicaltrials.gov
Lambrolizumab (MK-3475) in 2nd line for NSCLC

Objectives of Protocol:
- Assess safety and efficacy in patients with previously treated NSCLC

Eligibility Criteria for Protocol:
- 2 prior systemic therapies
- ≥1 measurable lesion
- ECOG PS of 0-1
- Submission of a new tumor specimen for PD-L1 analysis

Treatment:
10 mg/kg IV Q3W until progression by irRC, intolerable toxicity, or consent withdrawal

Patients:
N = 38: 42% male, 45% aged ≥65 years, 58% with ECOG PS 1, 66% former/current smokers, 16% squamous, 11% treated brain metastases

PD-L1 Status: Assessed with a Merck proprietary IHC clinical trial assay; 61% positive (>0), 26% negative, 13% not evaluable; potential cut point determined by the Youden Index from a receiver operator characteristics curve
Lambrolizumab (MK-3475) in 2nd line for NSCLC

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>N</th>
<th>irRC, Investigator Review</th>
<th>RECIST v1.1, Independent Review</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ORR, n (%)</td>
<td>Median PFS, wk (95% CI)</td>
</tr>
<tr>
<td>All</td>
<td>38</td>
<td>9 (24%) [11%, 40%]</td>
<td>9.1 (8.3, 17.4)</td>
</tr>
<tr>
<td>Non-squamous</td>
<td>31</td>
<td>7 (23%) [10%, 41%]</td>
<td>9.1 (8.3, 17.0)</td>
</tr>
<tr>
<td>Squamous</td>
<td>6</td>
<td>2 (33%) [4%, 78%]</td>
<td>23.5 (2.7, NR)</td>
</tr>
</tbody>
</table>

Patients with measurable disease on baseline imaging and an evaluable tumor specimen for PD-L1

<table>
<thead>
<tr>
<th>Score ≥ potential cut point</th>
<th>N</th>
<th>ORR, (%) [95% CI]</th>
<th>Median PFS, wk (95% CI)</th>
<th>N</th>
<th>ORR, (%) [95% CI]</th>
<th>Median PFS, wk (95% CI)</th>
<th>Median OS, wk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>score ≥ potential cut point</td>
<td>9</td>
<td>6 (67%) [30%, 93%]</td>
<td>—</td>
<td>7</td>
<td>4 (57%) [18%, 90%]</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>score < potential cut point</td>
<td>24</td>
<td>1 (4%) [0%, 21%]</td>
<td>—</td>
<td>22</td>
<td>2 (9%) [1%, 29%]</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

MK-3475 Responders Have Prolonged Duration of Response

- **On therapy**
- **Off therapy**
- **Confirmed response**
- **Progression**
- **Therapy continuing**

IASLC, 15th WCLC, abst 2416, 2013
MPDL3280A in monotherapy in NSCLC: phase I trial

- Response in 12/53 patients (ORR: 23%)
 - 3 squamous
 - 9 nonsquamous
- PD rate: 40% (21/53)
- Rapid and durable responses

PD = progressive disease; ORR = objective response rate; NS = nonsquamous; S = squamous

*ORR includes investigator assessed unconfirmed and confirmed partial responses per RECIST v1.1

*patients experiencing ongoing benefit per investigator

Patients first dosed at 1-20 mg.kg by Oct 1 2012. Data cut off April 30 2013

MPDL3280A: activity across NSCLC patient subgroups

- **EGFR status** (n=53)
 - EGFR mutation positive: 11%; EGFR wildtype: 76%; Unknown: 13%

- **KRAS status** (n=53)
 - KRAS mutation positive: 19%; KRAS wildtype: 51%; Unknown: 30%

Efficacy?

Anti-PD-1 Nivolumab
- 129 NSCLC pts\(^1\) – ORR 17.1%, (21.7\%)\(^*\)
 - 50% responded in 8 weeks
 - Median OS 9.9 months

Anti-PD-1 MK-3475
- 38 NSCLC pts\(^2\) – ORR 21%, (24\%)\(^*\)
- 221 NSCLC pts (80% PD-L1+)\(^3\) – ORR 15%, (21\%)\(^*\)

Anti-PD-L1 MPDL3280A
- 175 pts\(^5\) (85 NSCLC – 53 evaluable – 85% PD-L1+) – ORR 23%

Anti-PD-L1 BMS 936559
- 207 pts\(^4\) (75 NSCLC – 49 evaluable) – ORR 10%

Anti-PD-L1 MEDI4736
- 26 pts\(^6\) (13 NSCLC) – ORR 15%

*including immune responders, irRECIST

\(^1\)Brahmer, et al. IASLC WCLC, 2013 \(^2\)Garon E, et al. IASLC WCLC, 2013 \(^3\)Garon E, et al. ASCO 2014 abstr 8020
\(^4\)Brahmer, et al. NEJM 2012 \(^5\)Horn L, et al. IASLC WCLC, 2013 abstr MO18.01
\(^6\)Soria JC, et al. European Cancer Congress 2013 abstr 3408
Toxicity?

Anti-PD-1 **Nivolumab** - 129 NSCLC pts\(^1\)
- 53% related AEs, 5% Gr 3-4
- Pneumonitis – 6%, Gr 3-4 3 pts (2%) – 2 deaths

Anti-PD-1 **MK-3475** - 221 NSCLC pts\(^2\)
- 48% related AEs - fatigue, 6% Gr 3-4
- Pneumonitis – Gr 3-4 3 pts (1%)

Anti-PD-L1 **MPDL3280A** - 85 NSCLC pts\(^4\)
- 66% related AEs, 11% Gr 3-4 - fatigue
- No Gr 3-5 pneumonitis

Anti-PD-L1 **BMS 936559** - 207 pts\(^4\)
- 61% related AEs, 9% Gr 3-4
- No pneumonitis

Anti-PD-L1 **MEDI4736** - 26 pts\(^5\) (13 NSCLC)
- 34% related AEs, no Gr 3-4
- No pneumonitis, no colitis

Tolerability of oncology therapies

Chemotherapy

Target
Rapidly dividing tumour and normal cells

Adverse events
Diverse due to non-specific nature of therapy

I-O therapies

Target
Immune system

Adverse events
Unique events can occur as a result of immune-system activity

Targeted therapies

Target
Specific molecules involved in tumour growth and progression

Adverse events
Reflect targeted nature

Different spectrum of AEs with each modality

Some AEs with I-O may present like those with other therapies

BUT – AEs may have different aetiologies
e.g. diarrhoea/colitis, fatigue, rash/pruritus, endocrinopathies

Require different management strategies

Predicting / Enriching for response?

ORR : 17,1 – 24 %

- **Tissue:**
 - IHC for T cells and PD-L1
 - Gene signature for immune responsiveness, immunoscore

- **Blood markers, imaging**

- **Clinical factors**
Clinical factors for response?

- **Histology?** – SCLC more likely to respond?
 - Nivolumab 14/76 RR - 33% SCLC, 12% non-SCLC
 - MK-3475 9/38 RR – 33% SCC, 23 non-SCLC

- **Smoking? Mutation status?**
 - 85 pts, with MPDL3280A

\[\text{ORR} (%)\]

- [EGFR mutation]: 17% (1/6)
- [EGFR wildtype]: 23% (9/40)

Planned and ongoing lung cancer trials

<table>
<thead>
<tr>
<th>Phase</th>
<th>Treatment</th>
<th>Patient population</th>
<th>Status</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nivolumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Plus various (including ipilimumab)</td>
<td>NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Monotherapy</td>
<td>Advanced or recurrent NSCLC</td>
<td>Ongoing*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monotherapy</td>
<td>Advanced or metastatic NSCLC</td>
<td>Ongoing*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monotherapy</td>
<td>Squamous NSCLC</td>
<td>Ongoing*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monotherapy</td>
<td>Stage IV first line or PDL-1+ NSCLC</td>
<td>Not yet open</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monotherapy</td>
<td>Following platinum failure</td>
<td>Ongoing*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monotherapy</td>
<td>Advanced or metastatic NSCLC</td>
<td>Not yet open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pembrolizumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Monotherapy and plus chemotherapy</td>
<td>NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Monotherapy</td>
<td>PDL-1+ NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Monotherapy</td>
<td>Locally advanced NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>Combination</td>
<td>Advanced or metastatic NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monotherapy</td>
<td>NSCLC and brain metastases</td>
<td>Not yet open</td>
<td></td>
</tr>
<tr>
<td>2/3</td>
<td>Monotherapy</td>
<td>Prior-treated NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ipilimumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Plus erlotinib or crizotinib</td>
<td>Extensive disease SCLC</td>
<td>Not yet open</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Plus chemotherapy</td>
<td>Neoadjuvant NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Plus pembrolizumab</td>
<td>Locally advance or metastatic NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monotherapy</td>
<td>Limited disease SCLC</td>
<td>Not yet open</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Plus carboplatin and etoposide</td>
<td>Extensive disease SCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Plus etoposide and platinum therapy</td>
<td>Newly diagnosed extensive disease SCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Plus paclitaxel and carboplatin</td>
<td>Squamous NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPDL3280A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Plus Tarceva</td>
<td>NSCLC</td>
<td>Not yet open</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Monotherapy</td>
<td>PDL-1+ locally advanced NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Plus docetaxel</td>
<td>Locally/advanced disease post-platinum NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monotherapy</td>
<td>Locally/advanced disease post-platinum NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tremelimumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Plus gefitinib</td>
<td>NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>Plus MED14763</td>
<td>Advanced NSCLC</td>
<td>Recruiting</td>
<td></td>
</tr>
</tbody>
</table>

* And not recruiting

Implications of the adaptive immune resistance mechanism for combinatorial immunotherapy of cancer

Will immunotherapy obsolete CT/targeted therapy?
No – CT/targeted therapy primes tumour immunity

Tumours with increased mutations are more likely to have increased T cells

Immunotherapy – The beginning of the end for cancer

Transforming cancer into chronic disease

“Immunotherapies will likely become the treatment backbone in up to 60% of cancers over the next 10 years compared with < 3% today.”

Andrew Baum, MD

Open questions

→ Anti-PD1 vs anti-PD-L1 (schedule)

→ Augment the efficacy (combination therapy, sequencing, maintenance)

→ Combination therapy (CT, targeted agents, immunotherapy)

→ Duration of therapy (1 year, 2 years, indefinitely)

→ Toxicity (pneumonitis)

→ Treat beyond progression

→ What to do after acquired resistance

→ PD-L1 as a predictive biomarker or other biomarkers
Summary

→ Anti-tumour immune response through vaccination is appealing, but achieving objective response is quite rare.
 ▪ Nevertheless cancer vaccines remain a valid treatment that need further development
 ▪ New formulations/vaccine vectors, new antigens and application together with checkpoint blockade will likely rejuvenate cancer vaccine strategies

→ Immune-checkpoint blockade (CTLA-4, PD-1, PG-L1 antibodies) has demonstrated clear evidence of objective responses and survival.
 ▪ Probably and like several trials are seeking, we will need to combine conventional therapy with immune checkpoint blockade
 ▪ Unanswered safety and efficacy questions

→ Immunotherapies and combination immunotherapies will be the wave of the future.
 ▪ Key: improve responses
pelo doente,
para o doente
e com o doente com cancro do pulmão