Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Effect of Hemodynamic Changes in Plasma Propofol Concentrations Associated with Knee-Chest Position in Spinal Surgery: A Prospective Study
Publication . Chalo, D.; Pedrosa, S.; Amorim, Pedro; Silva, A.; Guedes de Pinho, P.; Correia, R.; Gouveia, S.; Sancho, C.
Background: Anesthesia induction and maintenance with propofol can be guided by target-controlled infusion (TCI) systems using pharmacokinetic (Pk) models. Physiological variables, such as changes in cardiac output (CO), can influence propofol pharmacokinetics. Knee-chest (KC) surgical positioning can result in CO changes. Objectives: This study aimed to evaluate the relationship between propofol plasma concentration prediction and CO changes after induction and KC positioning. Methods: This two-phase prospective cohort study included 20 patients scheduled for spinal surgery. Two different TCI anesthesia protocols were administered after induction. In phase I (n = 9), the loss of consciousness (LOC) concentration was set as the propofol target concentration and CO changes following induction and KC positioning were quantified. In phase II (n = 11), based on data from phase I, two reductions in the propofol target concentration on the pump were applied after LOC and before KC positioning. Propofol plasma concentrations were measured at different moments in both phases: after induction and after KC positioning. Results: Schnider Pk model showed a good performance in predicting propofol concentration after induction; however, after KC positioning, when a significant drop in CO occurred, the measured propofol concentrations were markedly underestimated. Intended reductions in the propofol target concentration did not attenuate HD changes. In the KC position, there was no correlation between the propofol concentration estimated by the Pk model and the measured concentration in plasma, as the latter was much higher (P = 0.013) while CO and BIS decreased significantly (P < 0.001 and P = 0.004, respectively). Conclusions: Our study showed that the measured propofol plasma concentrations during the KC position were significantly underestimated by the Schnider Pk model and were associated with significant CO decrease. When placing patients in the KC position, anesthesiologists must be aware of pharmacokinetic changes and, in addition to standard monitoring, the use of depth of anesthesia and cardiac output monitors may be considered in high-risk patients.
Analysis of electroencephalogram-derived indexes for anesthetic depth monitoring in pediatric patients with intellectual disability undergoing dental surgery
Publication . Silva, A.; Amorim, P.; Felix, L.; Abelha, F.; Mourão, J.
Background: Patients with intellectual disability (ID) often require general anesthesia during oral procedures. Anesthetic depth monitoring in these patients can be difficult due to their already altered mental state prior to anesthesia. In this study, the utility of electroencephalographic indexes to reflect anesthetic depth was evaluated in pediatric patients with ID. Methods: Seventeen patients (mean age, 9.6 ± 2.9 years) scheduled for dental procedures were enrolled in this study. After anesthesia induction with propofol or sevoflurane, a bilateral sensor was placed on the patient's forehead and the bispectral index (BIS) was recorded. Anesthesia was maintained with sevoflurane, which was adjusted according to the clinical signs by an anesthesiologist blinded to the BIS value. The index performance was accessed by correlation (with the end-tidal sevoflurane [EtSevo] concentration) and prediction probability (with a clinical scale of anesthesia). The asymmetry of the electroencephalogram between the left and right sides was also analyzed. Results: The BIS had good correlation and prediction probabilities (above 0.5) in the majority of patients; however, BIS was not correlated with EtSevo or the clinical scale of anesthesia in patients with Lennox-Gastaut, West syndrome, cerebral palsy, and epilepsy. BIS showed better correlations than SEF95 and TP. No significant differences were observed between the left- and right-side indexes. Conclusion: BIS may be able to reflect sevoflurane anesthetic depth in patients with some types of ID; however, more research is required to better define the neurological conditions and/or degrees of disability that may allow anesthesiologists to use the BIS.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BPD/75697/2011

ID