Publication
Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data
dc.contributor.author | Ambrósio, Renato | |
dc.contributor.author | Machado, Aydano P. | |
dc.contributor.author | Leão, Edileuza | |
dc.contributor.author | Lyra, João Marcelo G. | |
dc.contributor.author | Salomão, Marcella Q. | |
dc.contributor.author | Esporcatte, Louise G. Pellegrino | |
dc.contributor.author | da Fonseca Filho, João B.R. | |
dc.contributor.author | Ferreira-Meneses, Erica | |
dc.contributor.author | Sena, Nelson B. | |
dc.contributor.author | Haddad, Jorge S. | |
dc.contributor.author | Costa Neto, Alexandre | |
dc.contributor.author | de Almeida, Gildasio Castelo | |
dc.contributor.author | Roberts, Cynthia J. | |
dc.contributor.author | Elsheikh, Ahmed | |
dc.contributor.author | Vinciguerra, Riccardo | |
dc.contributor.author | Vinciguerra, Paolo | |
dc.contributor.author | Bühren, Jens | |
dc.contributor.author | Kohnen, Thomas | |
dc.contributor.author | Kezirian, Guy M. | |
dc.contributor.author | Hafezi, Farhad | |
dc.contributor.author | Hafezi, Nikki L. | |
dc.contributor.author | Torres-Netto, Emilio A. | |
dc.contributor.author | Lu, Nanji | |
dc.contributor.author | Kang, David Sung Yong | |
dc.contributor.author | Kermani, Omid | |
dc.contributor.author | Koh, Shizuka | |
dc.contributor.author | Padmanabhan, Prema | |
dc.contributor.author | Taneri, Suphi | |
dc.contributor.author | Trattler, William | |
dc.contributor.author | Gualdi, Luca | |
dc.contributor.author | Salgado-Borges, José | |
dc.contributor.author | Faria-Correia, Fernando | |
dc.contributor.author | Flockerzi, Elias | |
dc.contributor.author | Seitz, Berthold | |
dc.contributor.author | Jhanji, Vishal | |
dc.contributor.author | Chan, Tommy C.Y. | |
dc.contributor.author | Baptista, Pedro Manuel | |
dc.contributor.author | Reinstein, Dan Z. | |
dc.contributor.author | Archer, Timothy J. | |
dc.contributor.author | Rocha, Karolinne M. | |
dc.contributor.author | Waring, George O. | |
dc.contributor.author | Krueger, Ronald R. | |
dc.contributor.author | Dupps, William J. | |
dc.contributor.author | Khoramnia, Ramin | |
dc.contributor.author | Hashemi, Hassan | |
dc.contributor.author | Asgari, Soheila | |
dc.contributor.author | Momeni-Moghaddam, Hamed | |
dc.contributor.author | Zarei-Ghanavati, Siamak | |
dc.contributor.author | Shetty, Rohit | |
dc.contributor.author | Khamar, Pooja | |
dc.contributor.author | Belin, Michael W. | |
dc.contributor.author | Lopes, Bernardo T. | |
dc.date.accessioned | 2024-07-04T11:04:33Z | |
dc.date.available | 2024-07-04T11:04:33Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Purpose: To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection. Design: Multicenter cross-sectional case-control retrospective study. Methods: A total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 "bilateral" keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy. Results: The area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001). Conclusions: AI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | Ambrósio R Jr, Machado AP, Leão E, et al. Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data. Am J Ophthalmol. 2023;251:126-142. doi:10.1016/j.ajo.2022.12.016 | pt_PT |
dc.identifier.doi | 10.1016/j.ajo.2022.12.016 | pt_PT |
dc.identifier.issn | 0002-9394 | |
dc.identifier.issn | 1879-1891 | |
dc.identifier.uri | http://hdl.handle.net/10400.16/2995 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation.publisherversion | https://doi.org/10.1016/j.ajo.2022.12.016 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.title | Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | United States of America | pt_PT |
oaire.citation.endPage | 142 | pt_PT |
oaire.citation.issue | Elsevier Science | pt_PT |
oaire.citation.startPage | 126 | pt_PT |
oaire.citation.title | American Journal of Ophthalmology | pt_PT |
oaire.citation.volume | 251 | pt_PT |
person.familyName | Baptista | |
person.givenName | Pedro Manuel | |
person.identifier.orcid | 0000-0001-8285-1084 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | aefa59ff-77f9-42ff-ac9b-88373f5c2ac8 | |
relation.isAuthorOfPublication.latestForDiscovery | aefa59ff-77f9-42ff-ac9b-88373f5c2ac8 |