Browsing by Author "Medeiros, R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Angiogenesis in NSCLC: is vessel co-option the trunk that sustains the branches?Publication . Coelho, A.; Gomes, M.; Catarino, R.; Rolfo, C.; Lopes, A.; Medeiros, R.; Araújo, A.The critical role of angiogenesis in tumor development makes its inhibition a valuable new approach in therapy, rapidly making anti-angiogenesis a major focus in research. While the VEGF/VEGFR pathway is the main target of the approved anti-angiogenic molecules in NSCLC treatment, the results obtained are still modest, especially due to resistance mechanisms. Accumulating scientific data show that vessel co-option is an alternative mechanism to angiogenesis during tumor development in well-vascularized organs such as the lungs, where tumor cells highjack the existing vasculature to obtain its blood supply in a non-angiogenic fashion. This can explain the low/lack of response to current anti-angiogenic strategies. The same principle applies to lung metastases of other primary tumors. The exact mechanisms of vessel co-option need to be further elucidated, but it is known that the co-opted vessels regress by the action of Angiopoietin-2 (Ang-2), a vessel destabilizing cytokine expressed by the endothelial cells of the pre-existing mature vessels. In the absence of VEGF, vessel regression leads to tumor cell loss and hypoxia, with a subsequent switch to a neoangiogenic phenotype by the remaining tumor cells. Unravelling the vessel co-option mechanisms and involved players may be fruitful for numerous reasons, and the particularities of this form of vascularization should be carefully considered when planning anti-angiogenic interventions or designing clinical trials for this purpose. In view of the current knowledge, rationale for therapeutic approaches of dual inhibition of Ang-2 and VEGF are swiftly gaining strength and may serve as a launchpad to more successful NSCLC anti-vascular treatments.
- Genetic polymorphisms in key hypoxia-regulated downstream molecules and phenotypic correlation in prostate cancerPublication . Fraga, A.; Ribeiro, R.; Coelho, A.; Vizcaíno, J.; Coutinho, H.; Lopes, J.; Príncipe, P.; Lobato, C.; Lopes, C.; Medeiros, R.Background In this study we sought if, in their quest to handle hypoxia, prostate tumors express target hypoxia-associated molecules and their correlation with putative functional genetic polymorphisms. Methods Representative areas of prostate carcinoma (n = 51) and of nodular prostate hyperplasia (n = 20) were analysed for hypoxia-inducible factor 1 alpha (HIF-1α), carbonic anhydrase IX (CAIX), lysyl oxidase (LOX) and vascular endothelial growth factor (VEGFR2) immunohistochemistry expression using a tissue microarray. DNA was isolated from peripheral blood and used to genotype functional polymorphisms at the corresponding genes (HIF1A +1772 C > T, rs11549465; CA9 + 201 A > G; rs2071676; LOX +473 G > A, rs1800449; KDR – 604 T > C, rs2071559). Results Immunohistochemistry analyses disclosed predominance of positive CAIX and VEGFR2 expression in epithelial cells of prostate carcinomas compared to nodular prostate hyperplasia (P = 0.043 and P = 0.035, respectively). In addition, the VEGFR2 expression score in prostate epithelial cells was higher in organ-confined and extra prostatic carcinoma compared to nodular prostate hyperplasia (P = 0.031 and P = 0.004, respectively). Notably, for LOX protein the immunoreactivity score was significantly higher in organ-confined carcinomas compared to nodular prostate hyperplasia (P = 0.015). The genotype-phenotype analyses showed higher LOX staining intensity for carriers of the homozygous LOX +473 G-allele (P = 0.011). Still, carriers of the KDR−604 T-allele were more prone to have higher VEGFR2 expression in prostate epithelial cells (P < 0.006). Conclusions Protein expression of hypoxia markers (VEGFR2, CAIX and LOX) on prostate epithelial cells was different between malignant and benign prostate disease. Two genetic polymorphisms (LOX +473 G > A and KDR−604 T > C) were correlated with protein level, accounting for a potential gene-environment effect in the activation of hypoxia-driven pathways in prostate carcinoma. Further research in larger series is warranted to validate present findings.
- Influence of Genetic Polymorphisms in Prostaglandin E2 Pathway (COX-2/HPGD/SLCO2A1/ABCC4) on the Risk for Colorectal Adenoma Development and Recurrence after PolypectomyPublication . Pereira, C.; Queirós, S.; Galaghar, A.; Sousa, H.; Marcos-Pinto, R.; Pimentel-Nunes, P.; Brandão, C.; Medeiros, R.; Dinis-Ribeiro, M.OBJECTIVES: Deregulation of prostaglandin E2 (PGE2) levels reported in colorectal carcinogenesis contributes to key steps of cancer development. Our aim was to evaluate the influence of the genetic variability in COX-2/HPGD/SLCO2A1/ABCC4 PGE2 pathway genes on the development and recurrence of colorectal adenomas. METHODS: A case-control study was conducted gathering 480 unscreened individuals and 195 patients with personal history of adenomas. A total of 43 tagSNPs were characterized using the Sequenom platform or real-time PCR. RESULTS: Ten tagSNPs were identified as susceptibility biomarkers for the development of adenomas. The top three most meaningful tagSNPs include the rs689466 in COX-2 (odds ratio (OR)=3.23; 95% confidence interval (CI): 1.52-6.86), rs6439448 in SLCO2A1 (OR=0.38; 95% CI: 0.22-0.65) and rs1751051 in ABCC4 genes (OR=2.75; 95% CI: 1.58-4.80). The best four-locus gene-gene interaction model included the rs1346271, rs1863642 and rs12500316 single nucleotide polymorphisms in HPGD and rs1678405 in ABCC4 genes and was associated with a 13-fold increased susceptibility (95% CI: 3.84-46.3, P<0.0001, cross-validation (CV) accuracy: 0.78 and CV consistency: 8/10). Interesting, in low-risk patients the ABCC4 rs9524821AA genotype was associated not only with a higher hazard ratio (HR=2.93; 95% CI: 1.07-8.03), but half of these patients had adenoma recurrence at 60 months, considerably higher than the 21% noticed in low-risk patients. CONCLUSIONS: Genetic polymorphisms in COX-2/PGE2 pathway appear to contribute to the development of colorectal adenomas and influence the interval time to adenomas recurrence. The definition of risk models through the inclusion of genetic biomarkers might improve the adherence and optimization of current screening and surveillance guidelines for colorectal cancer prevention.
- Predictive clinical model of tumor response after chemoradiation in rectal cancerPublication . Santos, M.; Silva, C.; Rocha, A.; Nogueira, C.; Castro-Poças, F.; Araujo, A.; Matos, E.; Pereira, C.; Medeiros, R.; Lopes, C.Survival improvement in rectal cancer treated with neoadjuvant chemoradiotherapy (nCRT) is achieved only if pathological response occurs. Mandard tumor regression grade (TRG) proved to be a valid system to measure nCRT response. The ability to predict tumor response before treatment may significantly have impact the selection of patients for nCRT in rectal cancer. The aim is to identify potential predictive pretreatment factors for Mandard response and build a clinical predictive model design. 167 patients with locally advanced rectal cancer were treated with nCRT and curative surgery. Blood cell counts in peripheral blood were analyzed. Pretreatment biopsies expression of cyclin D1, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and protein 21 were assessed. A total of 61 single nucleotide polymorphisms were characterized using the Sequenom platform through multiplex amplification followed by mass-spectometric product separation. Surgical specimens were classified according to Mandard TRG. The patients were divided as: "good responders" (Mandard TRG1-2) and "poor responders" (Mandard TGR3-5). We examined predictive factors for Mandard response and performed statistical analysis. In univariate analysis, distance from anal verge, neutrophil lymphocyte ratio (NLR), cyclin D1, VEGF, EGFR, protein 21 and rs1810871 interleukin 10 (IL10) gene polymorphism are the pretreatment variables with predictive value for Mandard response. In multivariable analysis, NLR, cyclin D1, protein 21 and rs1800871 in IL10 gene maintain predictive value, allowing a clinical model design.