Browsing by Author "Selgas, R."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- European best practice guidelines for peritoneal dialysis. 1 General guidelines.Publication . Dombros, N.; Dratwa, M.; Feriani, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 2 The initiation of dialysis.Publication . Dombros, N.; Dratwa, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 3 Peritoneal access.Publication . Dombros, N.; Dratwa, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 4 Continuous ambulatory peritoneal dialysis delivery systems.Publication . Dombros, N.; Dratwa, M.; Feriani, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 5 Peritoneal dialysis solutionsPublication . Dombros, N.; Dratwa, D.; Feriani, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 7 Adequacy of peritoneal dialysis.Publication . Dombros, N.; Dratwa, M.; Feriani, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 8 Nutrition in peritoneal dialysisPublication . Dombros, N.; Dratwa, M.; Feriani, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- European best practice guidelines for peritoneal dialysis. 9 PD and transplantation.Publication . Dombros, N.; Dratwa, M.; Feriani, M.; Gokal, R.; Heimbürger, O.; Krediet, R.; Plum, J.; Rodrigues, A.; Selgas, R.; Struijk, D.; Verger, C.
- Peritoneal membrane phosphate transport status: a cornerstone in phosphate handling in peritoneal dialysisPublication . Bernardo, A.; Contesse, S.; Bajo, M.; Rodrigues, A.; Del Peso, G.; Ossorio, M.; Cabrita, A.; Selgas, R.BACKGROUND AND OBJECTIVES: Phosphate control impacts dialysis outcomes. Our aim was to define peritoneal phosphate transport in peritoneal dialysis (PD) and to explore its association with hyperphosphatemia, phosphate clearance (PPhCl), and PD modality. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Two hundred sixty-four patients (61% on continuous ambulatory PD [CAPD]) were evaluated at month 12. PPhCl was calculated from 24-hour peritoneal effluent. Phosphate (Ph) and creatinine (Cr) dialysate/plasma (D/P) were calculated at a 4-hour 3.86% peritoneal equilibration test. RESULTS: D/PPh correlated with D/PCr. PPhCl correlated better with D/PPh than with D/PCr. Prevalence of hyperphosphatemia (>5.5 mg/dl) was 30%. In a multiple regression analysis, only residual renal function was independently, negatively associated with hyperphosphatemia; in anuric patients, only D/PPh was an independent factor predicting hyperphosphatemia. D/PPh was 0.57 ± 0.10, and according to this, 16% of the patients were fast, 31% were fast-average, 35% were slow-average, and 17% were slow transporters. PPhCl was 37.5 ± 11.7 L/wk; it was lower in the slow transporter group (31 ± 14 L/wk). Among fast and fast-average transporters, PPhCl was comparable in both PD modalities. In comparison to automated PD, CAPD was associated with increased PPhCl among slow-average (36 ± 8 versus 32 ± 7 L/wk) and slow transporters (34 ± 15 versus 24 ± 9 L/wk). CONCLUSIONS: In hyperphosphatemic, particularly anuric, patients, optimal PD modality should consider peritoneal phosphate transport characteristics. Increasing dwell times and transfer to CAPD are effective strategies to improve phosphate handling in patients with inadequate phosphate control on automated PD.
- Two-in-One Protocol: Simultaneous Small-Pore and Ultrasmall-Pore Peritoneal Transport QuantificationPublication . Bernardo, A.; Bajo, A.; Santos, O.; Del Peso, G.; Carvalho, M.; Cabrita, A.; Selgas, R.; Rodrigues, A.BACKGROUND: Reduced free water transport (FWT) through ultrasmall pores contributes to net ultrafiltration failure (UFF) and should be seen as a sign of more severe functional deterioration of the peritoneal membrane. The modified peritoneal equilibration test (PET), measuring the dip in dialysate Na concentration, estimates only FWT. Our aim was to simultaneously quantify small-solute transport, FWT, and small-pore ultrafiltration (SPUF) during a single PET procedure. ♢ METHODS: We performed a 4-hour, 3.86% glucose PET, with additional measurement of ultrafiltration (UF) at 60 minutes, in 70 peritoneal dialysis patients (mean age: 50 ± 16 years; 61% women; PD vintage: 26 ± 23 months). We calculated the dialysate-to-plasma ratios (D/P) of creatinine and Na at 0 and 60 minutes, and the Na dip (Dip(D/PNa60')), the delta dialysate Na 0-60 (ΔDNa(0-60)), FWT, and SPUF. ♢ RESULTS: Sodium sieving (as measured by ΔDNa(0-60)) correlated strongly with the corrected Dip(D/PNa60') (r = 0.85, p < 0.0001) and the corrected FWT (r = 0.41, p = 0.005). Total UF showed better correlation with FWT than with indirect measurements of Na sieving (r = 0.46, p < 0.0001 for FWT; r = 0.360, p < 0.0001 for Dip(D/PNa60')). Corrected FWT fraction was 0.45 ± 0.16. A negative correlation was found between time on PD and both total UF and FWT (r = -0.253, p = 0.035 and r = -0.272, p = 0.023 respectively). The 11 patients (15.7%) diagnosed with UFF had lower FWT (89 mL vs 164 mL, p < 0.05) and higher D/P creatinine (0.75 vs 0.70, p < 0.05) than did the group with normal UF. The SPUF correlated positively with FWT in the normal UF group, but negatively in UFF patients (r = -0.709, p = 0.015). Among UFF patients on PD for a longer period, 44.4% had a FWT percentage below 45%. ♢ CONCLUSIONS: Measurement of FWT and SPUF is feasible by simultaneous quantification during a modified 3.86% glucose PET, and FWT is a decisive parameter for detecting causes of UFF in addition to increased effective capillary surface.