Browsing by Author "Porto, G."
Now showing 1 - 10 of 14
Results Per Page
Sort Options
- Co-selection of the H63D mutation and the HLA-A29 allele: a new paradigm of linkage disequilibrium?Publication . Cardoso, C.; Alves, H.; Mascaranhas, M.; Gonçalves, R.; Oliveira, P.; Rodrigues, P.; Cruz, E.; Sousa, M.; Porto, G.The major histocompatibility complex (MHC) shows a remarkable conservation of particular HLA antigens and haplotypes in linkage disequilibrium in most human populations, suggesting the existence of a convergent evolution. A recent example of such conservation is the association of particular HLA haplotypes with the HFE mutations. With the objective of exploring the significance of that association, the present paper offers an analysis of the linkage disequilibrium between HLA alleles or haplotypes and the HFE mutations in a Portuguese population. Allele and haplotype associations between HLA and HFE mutations were first reviewed in a population of 43 hemochromatosis families. The results confirmed the linkage disequilibrium of the HLA haplotype HLA-A3-B7 and the HLA-A29 allele, respectively, with the HFE mutations C282Y and H63D. In order to extend the study of the linkage disequilibrium between H63D and the HLA-A29-containing haplotypes in a normal, random population, an additional sample of 398 haplotypes was analyzed. The results reveal significant linkage disequilibrium between the H63D mutation and all HLA-A29-containing haplotypes, favoring the hypothesis of a co-selection of H63D and the HLA-A29 allele itself. An insight into the biological significance of this association is given by the finding of significantly higher CD8+ T-lymphocyte counts in subjects simultaneously carrying the H63D mutation and the HLA-A29 allele.
- Effects of highly conserved major histocompatibility complex (MHC) extended haplotypes on iron and low CD8+ T lymphocyte phenotypes in HFE C282Y homozygous hemochromatosis patients from three geographically distant areasPublication . Costa, M.; Cruz, E.; Barton, J.; Thorstensen, K.; Morais, S.; da Silva, B.; Pinto, J.; Vieira, C.; Vieira, J.; Acton, R.; Porto, G.Hereditary Hemochromatosis (HH) is a recessively inherited disorder of iron overload occurring commonly in subjects homozygous for the C282Y mutation in HFE gene localized on chromosome 6p21.3 in linkage disequilibrium with the human leukocyte antigen (HLA)-A locus. Although its genetic homogeneity, the phenotypic expression is variable suggesting the presence of modifying factors. One such genetic factor, a SNP microhaplotype named A-A-T, was recently found to be associated with a more severe phenotype and also with low CD8(+)T-lymphocyte numbers. The present study aimed to test whether the predictive value of the A-A-T microhaplotype remained in other population settings. In this study of 304 HH patients from 3 geographically distant populations (Porto, Portugal 65; Alabama, USA 57; Nord-Trøndelag, Norway 182), the extended haplotypes involving A-A-T were studied in 608 chromosomes and the CD8(+) T-lymphocyte numbers were determined in all subjects. Patients from Porto had a more severe phenotype than those from other settings. Patients with A-A-T seemed on average to have greater iron stores (p = 0.021), but significant differences were not confirmed in the 3 separate populations. Low CD8(+) T-lymphocytes were associated with HLA-A*03-A-A-T in Porto and Alabama patients but not in the greater series from Nord-Trøndelag. Although A-A-T may signal a more severe iron phenotype, this study was unable to prove such an association in all population settings, precluding its use as a universal predictive marker of iron overload in HH. Interestingly, the association between A-A-T and CD8(+) T-lymphocytes, which was confirmed in Porto and Alabama patients, was not observed in Nord-Trøndelag patients, showing that common HLA haplotypes like A*01-B*08 or A*03-B*07 segregating with HFE/C282Y in the three populations may carry different messages. These findings further strengthen the relevance of HH as a good disease model to search for novel candidate loci associated with the genetic transmission of CD8(+) T-lymphocyte numbers.
- Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosisPublication . Duarte, T.; Caldas, C.; Santos, A.; Silva-Gomes, S.; Santos-Gonçalves, A.; Martins, M.; Porto, G.; Lopes, J.In hereditary hemochromatosis, iron deposition in the liver parenchyma may lead to fibrosis, cirrhosis and hepatocellular carcinoma. Most cases are ascribed to a common mutation in the HFE gene, but the extent of clinical expression is greatly influenced by the combined action of yet unidentified genetic and/or environmental modifying factors. In mice, transcription factor NRF2 is a critical determinant of hepatocyte viability during exposure to acute dietary iron overload. We evaluated if the genetic disruption of Nrf2 would prompt the development of liver damage in Hfe(-/-) mice (an established model of human HFE-hemochromatosis).
- Hepcidin is regulated by promoter-associated histone acetylation and HDAC3Publication . Pasricha, S.; Lim, P.; Duarte, T.; Casu, C.; Oosterhuis, D.; Mleczko-Sanecka, K.; Suciu, M.; Da Silva, A.; Al-Hourani, K.; Arezes, J.; McHugh, K.; Gooding, S.; Frost, J.; Wray, K.; Santos, A.; Porto, G.; Repapi, E.; Gray, N.; Draper, S.; Ashley, N.; Soilleux, E.; Olinga, P.; Muckenthaler, M.; Hughes, J.; Rivella, S.; Milne, T.; Armitage, A.; Drakesmith, H.Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency.
- Iron overload and immunityPublication . Porto, G.; De Sousa, M.World J Gastroenterol. 2007 Sep 21;13(35):4707-15. Iron overload and immunity. Porto G, De Sousa M. Institute of Molecular and Cellular Biology, Rua do Campo Alegre, Porto 8234150, Portugal. gporto@ibmc.up.pt Abstract Progress in the characterization of genes involved in the control of iron homeostasis in humans and in mice has improved the definition of iron overload and of the cells affected by it. The cell involved in iron overload with the greatest effect on immunity is the macrophage. Intriguing evidence has emerged, however, in the last 12 years indicating that parenchymal iron overload is linked to genes classically associated with the immune system. This review offers an update of the genes and proteins relevant to iron metabolism expressed in cells of the innate immune system, and addresses the question of how this system is affected in clinical situations of iron overload. The relationship between iron and the major cells of adaptive immunity, the T lymphocytes, will also be reviewed. Most studies addressing this last question in humans were performed in the clinical model of Hereditary Hemochromatosis. Data will also be reviewed demonstrating how the disruption of molecules essentially involved in adaptive immune responses result in the spontaneous development of iron overload and how they act as modifiers of iron overload. PMID: 17729392 [PubMed - indexed for MEDLINE]
- Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosisPublication . Simão, M.; Camacho, A.; Ostertag, A.; Cohen-Solal, M.; Pinto, I.; Porto, G.; Hang Korng, E.; Cancela, M.Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet. The dietary iron overload caused an increase in inflammation and iron incorporation within the trabecular bone in both WT and Hfe-KO mice. However, the osteoporotic phenotype was only evident in Hfe-KO mice fed the iron-enriched diet. This appeared to result from an imbalance between bone formation and bone resorption driven by iron toxicity associated to Hfe-KO and confirmed by a decrease in bone microarchitecture parameters (identified by micro-CT) and osteoblast number. These findings were supported by the observed downregulation of bone metabolism markers and upregulation of ferritin heavy polypeptide 1 (Fth1) and transferrin receptor-1 (Tfrc), which are associated with iron toxicity and bone loss phenotype. In WT mice the iron rich diet was not enough to promote a bone loss phenotype, essentially due to the concomitant depression of bone resorption observed in those animals. In conclusion the dietary challenge influences the development of osteoporosis in the HH mice model thus suggesting that the iron content in the diet may influence the osteoporotic phenotype in systemic iron overload conditions.
- Local iron homeostasis in the breast ductal carcinoma microenvironmentPublication . Marques, O.; Porto, G.; Rêma, A.; Faria, F.; Cruz Paula, A.; Gomez-Lazaro, M.; Silva, P.; Martins-Silva, B.; Lopes, C.Abstract BACKGROUND: While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS: Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS: We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS: The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.
- Lymphocyte gene expression signatures from patients and mouse models of hereditary hemochromatosis reveal a function of HFE as a negative regulator of CD8+ T-lymphocyte activation and differentiation in vivoPublication . Costa, M.; Cruz, E.; Oliveira, S.; Benes, Vl.; Ivacevic, T.; Silva, M.; Vieira, I.; Dias, F.; Fonseca, S.; Gonçalves, M.; Lima, M.; Leitão, C.; Muckenthaler, M.; Pinto, J.; Porto, G.Abnormally low CD8+ T-lymphocyte numbers is characteristic of some patients with hereditary hemochromatosis (HH), a MHC-linked disorder of iron overload. Both environmental and genetic components are known to influence CD8+ T-lymphocyte homeostasis but the role of the HH associated protein HFE is still insufficiently understood. Genome-wide expression profiling was performed in peripheral blood CD8+ T lymphocytes from HH patients selected according to CD8+ T-lymphocyte numbers and from Hfe-/- mice maintained either under normal or high iron diet conditions. In addition, T-lymphocyte apoptosis and cell cycle progression were analyzed by flow cytometry in HH patients. HH patients with low CD8+ T-lymphocyte numbers show a differential expression of genes related to lymphocyte differentiation and maturation namely CCR7, LEF1, ACTN1, NAA50, P2RY8 and FOSL2, whose expression correlates with the relative proportions of naïve, central and effector memory subsets. In addition, expression levels of LEF1 and P2RY8 in memory cells as well as the proportions of CD8+ T cells in G2/M cell cycle phase are significantly different in HH patients compared to controls. Hfe-/- mice do not show alterations in CD8+ T-lymphocyte numbers but differential gene response patterns. We found an increased expression of S100a8 and S100a9 that is most pronounced in high iron diet conditions. Similarly, CD8+ T lymphocytes from HH patients display higher S100a9 expression both at the mRNA and protein level. Altogether, our results support a role for HFE as a negative regulator of CD8+ T-lymphocyte activation. While the activation markers S100a8 and S100a9 are strongly increased in CD8+ T cells from both, Hfe-/- mice and HH patients, a differential profile of genes related to differentiation/maturation of CD8+ T memory cells is evident in HH patients only. This supports the notion that HFE contributes, at least in part, to the generation of low peripheral blood CD8+ T lymphocytes in HH.
- A new 500 kb haplotype associated with high CD8+ T-lymphocyte numbers predicts a less severe expression of hereditary hemochromatosisPublication . Cruz, E.; Whittington, C.; Krikler, S.; Mascarenhas, C.; Lacerda, R.; Vieira, J.; Porto, G.Abstract BACKGROUND: Hereditary Hemochromatosis(HH) is a common genetic disorder of iron overload where the large majority of patients are homozygous for one ancestral mutation in the HFE gene. In spite of this remarkable genetic homogeneity, the condition is clinically heterogeneous, varying from a severe disease to an asymptomatic phenotype with only abnormal biochemical parameters. The recent recognition of the variable penetrance of the HH mutation in different large population studies demands the need to search for new modifiers of its phenotypic expression. The present study follows previous observations that MHC class-I linked genetic markers, associated with the setting of CD8+ T-lymphocyte numbers, could be clinically relevant modifiers of the phenotypic expression in HH, and aimed to find new markers that could be used as more reliable prognostic variables. METHODS: Haplotype analysis, including seven genetic markers within a 1 Mb region around the microsatellite D6S105 was performed in a group of 56 previously characterized C282Y homozygous Portuguese patients. Parameters analyzed in this study were total body iron stores, clinical manifestations related with HH and immunological parameters (total lymphocyte numbers, CD4+ and CD8+ T-lymphocyte numbers). An independent group of 10 C282Y homozygous patients from Vancouver, Canada, were also included in this study and analyzed for the same parameters. RESULTS: A highly conserved ancestral haplotype defined by the SNP markers PGBD1-A, ZNF193-A, ZNF165-T (designated as A-A-T) was found associated with both abnormally low CD8+ T-lymphocyte numbers and the development of a severe clinical expression of HH. In a small proportion of patients, another conserved haplotype defined by the SNP markers PGBD1-G, ZNF193-G, ZNF165-G (designated as G-G-G) was found associated with high CD8+ T-lymphocyte numbers and a milder clinical expression. Remarkably, the two conserved haplotypes defined in Portuguese patients were also observed in the geographically different population of Canadian patients, also predicting CD8+ T-lymphocyte numbers and the severity of disease. CONCLUSION: These results may have important implications not only for approaching the question of the penetrance of the hemochromatosis gene in different world populations but also to further narrow the region of interest to find a candidate gene involved in the setting of CD8+ T-lymphocyte numbers in humans.
- Non-Transferrin-Bound Iron (NTBI) Uptake by T Lymphocytes: Evidence for the Selective Acquisition of Oligomeric Ferric Citrate SpeciesPublication . Arezes, J.; Costa, M.; Vieira, I.; Dias, V.; Kong, X.; Fernandes, R.; Vos, M.; Carlsson, A.; Rikers, Y.; Porto, G.; Rangel, M.; Hider, R.; Pinto, J.Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI). NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.